Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.085
Filtrar
1.
Bull World Health Organ ; 102(4): 288-295, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38562197

RESUMEN

The World Health Organization (WHO) aims to reduce new leprosy cases by 70% by 2030, necessitating advancements in leprosy diagnostics. Here we discuss the development of two WHO's target product profiles for such diagnostics. These profiles define criteria for product use, design, performance, configuration and distribution, with a focus on accessibility and affordability. The first target product profile outlines requirements for tests to confirm diagnosis of leprosy in individuals with clinical signs and symptoms, to guide multidrug treatment initiation. The second target product profile outlines requirements for tests to detect Mycobacterium leprae or M. lepromatosis infection among asymptomatic contacts of leprosy patients, aiding prophylactic interventions and prevention. Statistical modelling was used to assess sensitivity and specificity requirements for these diagnostic tests. The paper highlights challenges in achieving high specificity, given the varying endemicity of M. leprae, and identifying target analytes with robust performance across leprosy phenotypes. We conclude that diagnostics with appropriate product design and performance characteristics are crucial for early detection and preventive intervention, advocating for the transition from leprosy management to prevention.


L'Organisation mondiale de la Santé (OMS) vise à réduire le nombre de nouveaux cas de lèpre de 70% d'ici 2030, ce qui nécessite un meilleur diagnostic de la maladie. Dans le présent document, nous évoquons le développement de deux profils de produit cible établis par l'OMS à cette fin. Ces profils définissent des critères en matière d'utilisation, de conception, de performances, de configuration et de distribution du produit, en accordant une attention particulière à l'accessibilité et à l'abordabilité. Le premier profil de produit cible décrit les exigences pour les tests servant à confirmer le diagnostic de la lèpre chez les individus qui présentent des signes cliniques et des symptômes, afin d'orienter l'instauration d'un traitement à base de plusieurs médicaments. Le second profil de produit cible décrit les exigences pour les tests servant à détecter une infection à Mycobacterium leprae ou M. lepromatosis parmi les contacts asymptomatiques de patients lépreux, ce qui contribue à l'adoption de mesures prophylactiques et à la prévention. Nous avons eu recours à une modélisation statistique pour évaluer les exigences de sensibilité et de spécificité de ces tests diagnostiques. Cet article met en évidence les obstacles à l'atteinte d'un niveau élevé de spécificité en raison de l'endémicité variable de M. leprae, et à l'identification d'analytes cibles offrant de bons résultats chez les phénotypes lépreux. Nous concluons qu'un diagnostic reposant sur des caractéristiques de performance et de conception appropriées est essentiel pour détecter rapidement la maladie et intervenir en amont, et nous plaidons pour une prévention plutôt qu'une gestion de la lèpre.


La Organización Mundial de la Salud (OMS) pretende reducir los nuevos casos de lepra en un 70% para 2030, lo que requiere avances en el diagnóstico de la lepra. Aquí se analiza el desarrollo de dos perfiles de productos objetivo de la OMS para este tipo de diagnósticos. Estos perfiles definen los criterios de uso, diseño, rendimiento, configuración y distribución de los productos, centrándose en su accesibilidad y asequibilidad. El primer perfil de producto objetivo describe los requisitos de las pruebas para confirmar el diagnóstico de la lepra en personas con signos y síntomas clínicos, con el fin de orientar el inicio del tratamiento con múltiples fármacos. El segundo perfil de producto objetivo describe los requisitos de las pruebas para detectar la infección por Mycobacterium leprae o M. lepromatosis entre los contactos asintomáticos de los pacientes con lepra, para facilitar las intervenciones profilácticas y la prevención. Se utilizaron modelos estadísticos para evaluar los requisitos de sensibilidad y especificidad de estas pruebas diagnósticas. El artículo destaca las dificultades para lograr una alta especificidad, dada la diferente endemicidad de M. leprae, y para identificar analitos diana con un rendimiento sólido en todos los fenotipos de lepra. Concluimos que los diagnósticos con un diseño de producto y unas características de rendimiento adecuados son fundamentales para la detección precoz y la intervención preventiva, lo que favorece la transición del manejo de la lepra a la prevención.


Asunto(s)
Lepra , Humanos , Lepra/diagnóstico , Lepra/tratamiento farmacológico , Mycobacterium leprae/genética , Sensibilidad y Especificidad , Modelos Estadísticos , Diagnóstico Precoz
2.
Mol Biol Rep ; 51(1): 504, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616219

RESUMEN

BACKGROUND: Mycobacterium leprae causes leprosy that is highly stigmatized and chronic infectious skin disease. Only some diagnostic tools are being used for the identification M. leprae in clinical samples, such as bacillary detection, and histopathological tests. These methods are invasive and often have low sensitivity. Currently, the PCR technique has been used as an effective tool fordetecting M. leprae DNA across different clinical samples. The current study aims to detect M. leprae DNA in urine samples of untreated and treated leprosy patients using the Rlep gene (129 bp) and compared the detection among Ridley-Jopling Classification. METHODS: Clinical samples (Blood, Urine, and Slit Skin Smears (SSS)) were collected from leprosy and Non-leprosy patients. DNA extraction was performed using standard laboratory protocol and Conventional PCR was carried out for all samples using Rlep gene target and the amplicons of urine samples were sequenced by Sanger sequencing to confirm the Rlep gene target. RESULTS: The M. leprae DNA was successfully detected in all clinical samples across all types of leprosy among all the study groups using RLEP-PCR. Rlep gene target was able to detect the presence of M. leprae DNA in 79.17% of urine, 58.33% of blood, and 50% of SSS samples of untreated Smear-Negative leprosy patients. The statistical significant difference (p = 0.004) was observed between BI Negative (Slit Skin Smear test) and RLEP PCR positivity in urine samples of untreated leprosy group. CONCLUSION: The PCR positivity using Rlep gene target (129 bp) was highest in all clinical samples among the study groups, across all types of leprosy. Untreated tuberculoid and PNL leprosy patients showed the highest PCR positivity in urine samples, indicating its potential as a non-invasive diagnostic tool for leprosy and even for contact screening.


Asunto(s)
Bacillus , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Piel , Firmicutes , Reacción en Cadena de la Polimerasa
3.
Indian J Med Res ; 159(2): 121-129, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38577854

RESUMEN

ABSTRACT: Leprosy, an ancient disease, continues to be a public health concern as it remains endemic in several countries. After reaching the elimination target (1/10,000) as a public health problem in 2005 in India, around 1.2 lakh cases have been detected every year over the last decade indicating active transmission of leprosy bacillus (Mycobacterium leprae). Single-nucleotide polymorphisms (SNPs), genomic insertions/deletions and variable-number tandem repeats (VNTRs) have been identified as genetic markers for tracking M. leprae transmission. As the leprosy bacilli cannot be cultured in vitro, molecular testing of M. leprae genotypes is done by polymerase chain reaction-based sequencing which provides a practical alternative for the identification of strains as well as drug resistance-associated mutations. Whole-genome sequencing (WGS) of M. leprae directly from clinical samples has also proven to be an effective tool for identifying genetic variations which can further help refine the molecular epidemiological schemes based on SNPs and VNTRs. However, the WGS data of M. leprae strains from India are scarce, being responsible for a gross under-representation of the genetic diversity of M. leprae strains present in India and need to be addressed suitably. Molecular studies of leprosy can provide better insight into phylogeographic markers to monitor the transmission dynamics and emergence of antimicrobial resistance. An improved understanding of M. leprae transmission is essential to guide efficient leprosy control strategies. Therefore, this review compiles and discusses the current status of molecular epidemiology, genotyping and the potential of genome-wide analysis of M. leprae strains in the Indian context.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , ADN Bacteriano/genética , Lepra/epidemiología , Lepra/genética , Polimorfismo de Nucleótido Simple/genética , Epidemiología Molecular
4.
Sci Rep ; 14(1): 6365, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493220

RESUMEN

Leprosy is a chronic bacterial infection mainly caused by Mycobacterium leprae that primarily affects skin and peripheral nerves. Due to its ability to absorb carbon from the host cell, the bacillus became dependent on energy production, mainly through oxidative phosphorylation. In fact, variations in genes of Complex I of oxidative phosphorylation encoded by mtDNA have been associated with several diseases in humans, including bacterial infections, which are possible influencers in the host response to leprosy. Here, we investigated the presence of variants in the mtDNA genes encoding Complex I regarding leprosy, as well as the analysis of their pathogenicity in the studied cohort. We found an association of 74 mitochondrial variants with either of the polar forms, Pole T (Borderline Tuberculoid) or Pole L (Borderline Lepromatous and Lepromatous) of leprosy. Notably, six variants were exclusively found in both clinical poles of leprosy, including m.4158A>G and m.4248T>C in MT-ND1, m.13650C>A, m.13674T>C, m.12705C>T and m.13263A>G in MT-ND5, of which there are no previous reports in the global literature. Our observations reveal a substantial number of mutations among different groups of leprosy, highlighting a diverse range of consequences associated with mutations in genes across these groups. Furthermore, we suggest that the six specific variants exclusively identified in the case group could potentially play a crucial role in leprosy susceptibility and its clinical differentiation. These variants are believed to contribute to the instability and dysregulation of oxidative phosphorylation during the infection, further emphasizing their significance.


Asunto(s)
Lepra , Humanos , Lepra/genética , Mycobacterium leprae/genética , Piel , ADN Mitocondrial , Antígenos Bacterianos
5.
J Med Microbiol ; 73(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38362924

RESUMEN

Introduction. We have examined four burials from the St Mary Magdalen mediaeval leprosarium cemetery in Winchester, Hampshire, UK. One (Sk.8) was a male child, two (Sk.45 and Sk.52) were adolescent females and the fourth (Sk.512) was an adult male. The cemetery was in use between the 10th and 12th centuries. All showed skeletal lesions of leprosy. Additionally, one of the two females (Sk.45) had lesions suggestive of multi-cystic tuberculosis and the second (Sk.52) of leprogenic odontodysplasia (LO), a rare malformation of the roots of the permanent maxillary incisors.Gap statement. Relatively little is known of the manifestations of lepromatous leprosy (LL) in younger individuals from the archaeological record.Aims and Methodology. To address this, we have used ancient DNA testing and osteological examination of the individuals, supplemented with X-ray and microcomputed tomography (micro-CT) scan as necessary to assess the disease status.Results and Conclusions. The presence of Mycobacterium leprae DNA was confirmed in both females, and genotyping showed SNP type 3I-1 strains but with a clear genotypic variation. We could not confirm Mycobacterium tuberculosis complex DNA in the female individual SK.45. High levels of M. leprae DNA were found within the pulp cavities of four maxillary teeth from the male child (Sk.8) with LO, consistent with the theory that the replication of M. leprae in alveolar bone may interfere with root formation at key stages of development. We report our biomolecular findings in these individuals and review the evidence this site has contributed to our knowledge of mediaeval leprosy.


Asunto(s)
Lepra Multibacilar , Lepra , Adulto , Niño , Humanos , Masculino , Femenino , Adolescente , Microtomografía por Rayos X , Lepra/microbiología , Mycobacterium leprae/genética , ADN Bacteriano/genética , Reino Unido
6.
Front Public Health ; 12: 1148705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327578

RESUMEN

Objectives: The present study analyzed the impact of the COVID-19 pandemic on the prevalence and incidence of new leprosy cases, as well as the diversity, distribution, and temporal transmission of Mycobacterium leprae strains at the county level in leprae-endemic provinces in Southwest China. Methods: A total of 219 new leprosy cases during two periods, 2018-2019 and 2020-2021, were compared. We genetically characterized 83 clinical isolates of M. leprae in Guizhou using variable number tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). The obtained genetic profiles and cluster consequences of M. leprae were compared between the two periods. Results: There was an 18.97% decrease in the number of counties and districts reporting cases. Considering the initial months (January-March) of virus emergence, the number of new cases in 2021 increased by 167% compared to 2020. The number of patients with a delay of >12 months before COVID-19 (63.56%) was significantly higher than that during COVID-19 (48.51%). Eighty-one clinical isolates (97.60%) were positive for all 17 VNTR types, whereas two (2.40%) clinical isolates were positive for 16 VNTR types. The (GTA)9, (TA)18, (TTC)21 and (TA)10 loci showed higher polymorphism than the other loci. The VNTR profile of these clinical isolates generated five clusters, among which the counties where the patients were located were adjacent or relatively close to each other. SNP typing revealed that all clinical isolates possessed the single SNP3K. Conclusion: COVID-19 may have a negative/imbalanced impact on the prevention and control measures of leprosy, which could be a considerable fact for official health departments. Isolates formed clusters among counties in Guizhou, indicating that the transmission chain remained during the epidemic and was less influenced by COVID-19 preventative policies.


Asunto(s)
COVID-19 , Lepra , Humanos , Mycobacterium leprae/genética , Pandemias , ADN Bacteriano/genética , COVID-19/epidemiología , Lepra/epidemiología , Lepra/microbiología , China/epidemiología
7.
Int J Infect Dis ; 142: 106946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38278287

RESUMEN

OBJECTIVES: Mycobacterium leprae is able to infect Schwann cells leading to neural damage. Neurotrophins are involved in nervous system plasticity and impact neural integrity during diseases. Investigate the association between single nucleotide polymorphisms in neurotrophin genes and leprosy phenotypes, especially neural damage. DESIGN: We selected single nucleotide polymorphisms in neurotrophins or their receptors genes associated with neural disorders: rs6265 and rs11030099 of brain-derived neurotrophic factor (BDNF), rs6330 of BDNF, rs6332 in NT3 and rs2072446 of P75NTR. The association of genetic frequencies with leprosy phenotypes was investigated in a case-control study. RESULTS: An association of the BDNF single nucleotide polymorphism rs11030099 with the number of affected nerves was demonstrated. The "AA+AC" genotypes were demonstrated to be protective against nerve impairment. However, this variation does not affect BDNF serum levels. BDNF is an important factor for myelination of Schwann cells and polymorphisms in this gene can be associated with leprosy outcome. Moreover, rs11030099 is located in the binding region for micro-RNA (miRNA) 26a that could be involved in control of BDNF expression. We demonstrated different expression levels of this miRNA in polar forms of leprosy. CONCLUSION: Our findings demonstrate for the first time an association between the polymorphism rs11030099 in the BDNF gene and neural commitment in leprosy and may indicate a possible role of miRNA-26a acting synergistically to these genetic variants in neural damage development.


Asunto(s)
Lepra , MicroARNs , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Estudios de Casos y Controles , Lepra/genética , Lepra/microbiología , Mycobacterium leprae/genética , Polimorfismo de Nucleótido Simple
8.
J Infect Chemother ; 30(6): 531-535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38141720

RESUMEN

INTRODUCTION: The importance of DNA repair enzymes in maintaining genomic integrity is highlighted by the hypothesis that DNA damage by reactive oxygen/nitrogen species produced inside the host cell is essential for the mutagenesis process. Endonuclease III (Nth), formamidopyrimide (Fpg) and endonuclease VIII (Nei) DNA glycosylases are essential components of the bacterial base excision repair process. Mycobacterium leprae lost both fpg/nei genes during the reductive evolution event and only has the nth (ML2301) gene. This study aims to characterize the mutations in the nth gene of M. leprae strains and explore its correlation with drug-resistance. METHOD: A total of 91 M. leprae positive DNA samples extracted from skin biopsy samples of newly diagnosed leprosy patients from NSCB Hospital Jabalpur were assessed for the nth gene as well as drug resistance-associated loci of the rpoB, gyrA and folP1 genes through PCR followed by Sanger sequencing. RESULTS: Of these 91 patients, a total of two insertion frameshift mutations, two synonymous and seven nonsynonymous mutations were found in nth in seven samples. Sixteen samples were found to be resistant to ofloxacin and one was found to be dapsone resistant as per the known DRDR mutations. No mutations were found in the rpoB region. Interestingly, none of the nth mutations were identified in the drug-resistant associated samples. CONCLUSION: The in-silico structural analysis of the non-synonymous mutations in the Nth predicted five of them were to be deleterious. Our results suggest that the mutations in the nth gene may be potential markers for phylogenetic and epidemiological studies.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Leprostáticos/farmacología , Leprostáticos/uso terapéutico , Lepra/genética , Lepra/tratamiento farmacológico , Filogenia , Farmacorresistencia Bacteriana/genética , Mutación , ADN Bacteriano/genética , India , Reparación del ADN/genética
9.
Exp Biol Med (Maywood) ; 248(22): 2083-2094, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38059475

RESUMEN

Leprosy is a neglected chronic infectious disease caused by obligate intracellular bacilli, Mycobacterium leprae and Mycobacterium lepromatosis. Despite multidrug therapy (MDT) success, leprosy accounts for more than 200,000 new cases yearly. Leprosy diagnosis remains based on the dermato-neurologic examination, but histopathology of skin biopsy and bacilloscopy of intradermal scraping are subsidiary diagnostic tests that require expertise and laboratory infrastructure. This minireview summarizes the state of the art of serologic tests to aid leprosy diagnosis, highlighting enzyme-linked immunosorbent assay (ELISA) and point-of-care tests (POCT) biotechnologies. Also, the impact of the postgenomic era on the description of new recombinantly expressed M. leprae-specific protein antigens, such as leprosy Infectious Disease Research Institute (IDRI) diagnostic (LID)-1 is summarized. Highly specific and sensitive molecular techniques to detect M. leprae DNA as the quantitative polymerase chain reaction (qPCR) and the loop-mediated isothermal amplification (LAMP) are briefly reviewed. Serology studies using phenolic glycolipid-I (PGL-I) semi-synthetic antigens, LID-1 fusion antigen, and the single fusion complex natural disaccharide-octyl (NDO)-LID show high sensitivity in multibacillary (MB) patients. However, serology is not applicable to paucibacillary patients, as they have weak humoral response and robust cell-mediated response, requiring tests for cellular biomarkers. Unlike ELISA-based tests, leprosy-specific POCT based on semi-synthetic PGL-I antigens and NDO-LID 1 antigen is easy to perform, cheaper, equipment-free, and can contribute to early diagnosis avoiding permanent incapacities and helping to interrupt M. leprae transmission. Besides its use to help diagnosis of household contacts or at-risk populations in endemic areas, potential applications of leprosy serology include monitoring MDT efficacy, identification of recent infection, especially in young children, as surrogate markers of disease progression to orient adult chemoprophylaxis and as a predictor of type 2 leprosy reactions. Advances in molecular biology techniques have reduced the complexity and execution time of qPCR confirming its utility to help diagnosis while leprosy-specific LAMP holds promise as an adjunct test to detect M. leprae DNA.


Asunto(s)
Enfermedades Transmisibles , Lepra , Adulto , Niño , Humanos , Preescolar , Quimioterapia Combinada , Leprostáticos , Antígenos Bacterianos , Anticuerpos Antibacterianos , Lepra/diagnóstico , Mycobacterium leprae/genética , Glucolípidos , ADN
10.
Infect Genet Evol ; 116: 105537, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38056703

RESUMEN

BACKGROUND: Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. Both organisms cannot be cultured in vitro. M. lepromatosis was found to be associated mainly with diffuse lepromatous leprosy and with Lucio's phenomena initially. Later, M. lepromatosis was observed in borderline leprosy cases (BL), lepromatous leprosy cases (LL) and leprosy reactional cases (T1R and ENL). Although many cases are being reported with similar clinical features like Lucio phenomenon in India but M. lepromatosis was not isolated from these cases. The aim of this study was to screen MB patients and patients with type 2 reaction for the presence of M. lepromatosis. METHODOLOGY: We recruited a total of 75 multibacillary leprosy cases (45 MB cases without reaction and 30 type 2 reaction (ENL) cases) from TLM hospitals Purulia (West Bengal), Barabanki (Uttar Pradesh), Shahdara (Delhi) and PGIMER (Chandigarh), India. Punch biopsies of 5 mm were collected in 70% ethanol from all the study subjects. DNA was extracted followed by Hemi-nested PCR targeting 16S rRNA gene specific for M. lepromatosis. Further, PCR products were processed for Sanger sequencing for an absolute confirmation of M. lepromatosis. Whole genome sequencing was done to confirm the presence of M. lepromatosis. RESULT: We observed presence of M. lepromatosis in 4 necrotic ENL patients by heminested PCR. There was 100% 16S rRNA sequence similarity with M. lepromatosis FJ924 in one case, 98.96% in two cases and in one case it was 90.9% similarity by nucleotide BLAST (BLASTn) by using the NCBI website. On the basis of Sanger sequencing, we noted presence of M. lepromatosis in 3 necrotic ENL patients as one sample only gave 90.9% similarity by BLASTn. On the basis of de novo assembly and genome obtained, only one sample S4 with a 2.9 mb genome size was qualified for downstream analysis. Sixteen M. lepromatosis- specific proteins were identified in this case and the closest species was M. lepromatosis strain FJ924 based on whole genome level phylogeny. CONCLUSION: These results provide valuable insights into the prevalence of M. lepromatosis in ENL patients in different regions of India and contribute to our understanding of the genetic characteristics of this pathogen in the context of leprosy.


Asunto(s)
Lepra Lepromatosa , Lepra , Humanos , Lepra Lepromatosa/epidemiología , Lepra Lepromatosa/microbiología , Lepra Lepromatosa/patología , ARN Ribosómico 16S/genética , Mycobacterium leprae/genética , Lepra/microbiología , Genómica
11.
Int J Mycobacteriol ; 12(4): 388-393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149532

RESUMEN

Background: The lepromatous leprosy (LL) disease is caused by Mycobacterium leprae and Mycobacterium lepromatosis which is characterized by inadequate response to treatment, a propensity to drug resistance, and patient disability. We aimed to evaluate current immunomodulatory medicines and their target proteins collectively as a drug repurposing strategy to decipher novel uses for LL. Methods: A dataset of human genes associated with LL-immune response was retrieved from public health genomic databases including the Human Genome Epidemiology Navigator and DisGeNET. Retrieved genes were filtered and enriched to set a robust network (≥10, up to 21 edges) and analyzed in the Cytoscape program (v3.9). Drug associations were obtained in the NDEx Integrated Query (v1.3.1) coupled with drug databases such as ChEMBL, BioGRID, and DrugBank. These networks were analyzed in Cytoscape with the CyNDEx-2 plugin and STRING protein network database. Results: Pathways analyses resulted in 100 candidate drugs organized into pharmacological groups with similar targets and filtered on 54 different drugs. Gene-target network analysis showed that the main druggable targets associated with LL were tumoral necrosis factor-alpha, interleukin-1B, and interferon-gamma. Consistently, glucosamine, binimetinib, talmapimod, dilmapimod, andrographolide, and VX-702 might have a possible beneficial effect coupled with LL treatment. Conclusion: Based on our drug repurposing analysis, immunomodulatory drugs might have a promising potential to be explored further as therapeutic options or to alleviate symptoms in LL patients.


Asunto(s)
Lepra Lepromatosa , Humanos , Lepra Lepromatosa/tratamiento farmacológico , Reposicionamiento de Medicamentos , Mycobacterium leprae/genética , Interferón gamma
12.
J Glob Antimicrob Resist ; 35: 262-267, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852372

RESUMEN

OBJECTIVES: Drug resistance in leprosy is an emerging concern, leading to treatment failures, recurrences, and potential spread of resistant Mycobacterium leprae in the community. In this study, we aimed to assess drug resistance prevalence and patterns amongst leprosy patients at a tertiary care referral hospital in India. METHODS: Mutations in drug resistance determining regions for dapsone, rifampicin, and ofloxacin of the M. leprae genome in DNA extracted from skin biopsies of 136 leprosy patients (treatment-naive = 67, with persistent skin lesions = 35, with recurrence = 34) were analysed by polymerase chain reaction followed by Sanger sequencing. Wild-type strain (Thai-53) was used as a reference strain. RESULTS: Resistance mutations were identified in a total of 23 patients, constituting 16.9% of the cohort. Within this subset of 23 cases, resistance to ofloxacin was observed in 17 individuals (12.5%), while resistance to both dapsone and rifampicin was detected in three patients each (2.2% for both). The occurrence of ofloxacin resistance showed minimal disparity between recurrent and treatment-naive cases, at 17.6% and 16.4%, respectively. Dapsone resistance emerged in two treatment-naive cases and one case with persistent skin lesions. Notably, none of the treatment-naive cases or those with recurrence/relapse exhibited rifampicin resistance. Subsequently, no statistically significant correlation was identified between other clinical variables and the presence of antimicrobial resistance. CONCLUSIONS: The occurrence of resistance to the current multidrug therapy regimen (specifically dapsone and rifampicin) and to ofloxacin, a secondary antileprosy medication in M. leprae, represents a concerning scenario. This calls for an expansion towards bactericidal drug options and the establishment of robust surveillance for drug resistance in countries burdened with high leprosy rates. Moreover, the introduction of stringent antimicrobial stewardship initiatives is imperative. As a single centre study, it represents a limited, cross-sectional view of the real situation in the field.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Rifampin/farmacología , Rifampin/uso terapéutico , Leprostáticos/farmacología , Leprostáticos/uso terapéutico , Ofloxacino/farmacología , Quimioterapia Combinada , Estudios Transversales , Farmacorresistencia Bacteriana/genética , Lepra/tratamiento farmacológico , Lepra/epidemiología , Dapsona/farmacología , Dapsona/uso terapéutico , India/epidemiología
13.
Diagn Microbiol Infect Dis ; 107(4): 116084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832201

RESUMEN

Mycobacterium leprae is classified into four SNP genotypes and 16 subtypes (from 1A to 4P) that exhibit phylogeographical association reported from around the world. Among them, genotypes 1D and 3I represent more than 60% of M. leprae strains. Here, we report a new method for M. leprae genotyping which identifies the genotypes 1D and 3I by combining multiplex PCR amplification and restriction fragment length polymorphism (RFLP) of a M. leprae DNA amplicons using AgeI restriction enzyme. Agarose gel electrophoresis showed a deletion of 11 bp only among 3I genotypes by electrophoresis. When this multiplex PCR reaction is subjected to AgeI digestion, successful restriction digestion shows three bands for all the genotypes except 1D where only two bands were observed due to loss of restriction site. This method gives us the advantage of 1-step identification of the two most prevalent strains of M. leprae without using specialized equipments such as the Sanger sequencing system or quantitative PCR.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Polimorfismo de Longitud del Fragmento de Restricción , Genotipo , Secuencia de Bases , ADN Bacteriano/genética
14.
BMC Microbiol ; 23(1): 272, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770823

RESUMEN

BACKGROUND: Mycobacterium leprae (ML) is the pathogen that causes leprosy, which has a long history and still exists today. ML is an intracellular mycobacterium that dominantly induces leprosy by causing permanent damage to the skin, nerves, limbs and eyes as well as deformities and disabilities. Moreover, ML grows slowly and is nonculturable in vitro. Given the prevalence of leprosy, a highly sensitive and rapid method for the early diagnosis of leprosy is urgently needed. RESULTS: In this study, we devised a novel tool for the diagnosis of leprosy by combining restriction endonuclease, real-time fluorescence analysis and multiple cross displacement amplification (E-RT-MCDA). To establish the system, primers for the target gene RLEP were designed, and the optimal conditions for E-RT-MCDA at 67 °C for 36 min were determined. Genomic DNA from ML, various pathogens and clinical samples was used to evaluate and optimize the E-RT-MCDA assay. The limit of detection (LoD) was 48.6 fg per vessel for pure ML genomic DNA, and the specificity of detection was as high as 100%. In addition, the detection process could be completed in 36 min by using a real-time monitor. CONCLUSION: The E-RT-MCDA method devised in the current study is a reliable, sensitive and rapid technique for leprosy diagnosis and could be used as a potential tool in clinical settings.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Sensibilidad y Especificidad , Lepra/diagnóstico , Lepra/microbiología , Piel/microbiología , ADN , ADN Bacteriano/genética , Técnicas de Amplificación de Ácido Nucleico/métodos
15.
Emerg Infect Dis ; 29(8): 1698-1700, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37486691

RESUMEN

Florida, USA, has witnessed an increased incidence of leprosy cases lacking traditional risk factors. Those trends, in addition to decreasing diagnoses in foreign-born persons, contribute to rising evidence that leprosy has become endemic in the southeastern United States. Travel to Florida should be considered when conducting leprosy contact tracing in any state.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Animales , Mycobacterium leprae/genética , Florida/epidemiología , Armadillos , Lepra/diagnóstico , Lepra/epidemiología , Sudeste de Estados Unidos
16.
EBioMedicine ; 93: 104649, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37327675

RESUMEN

BACKGROUND: Expansion of antimicrobial resistance monitoring and epidemiological surveillance are key components of the WHO strategy towards zero leprosy. The inability to grow Mycobacterium leprae in vitro precludes routine phenotypic drug susceptibility testing, and only limited molecular tests are available. We evaluated a culture-free targeted deep sequencing assay, for mycobacterial identification, genotyping based on 18 canonical SNPs and 11 core variable-number tandem-repeat (VNTR) markers, and detection of rifampicin, dapsone and fluoroquinolone resistance-associated mutations in rpoB/ctpC/ctpI, folP1, gyrA/gyrB, respectively, and hypermutation-associated mutations in nth. METHODS: The limit of detection (LOD) was determined using DNA of M. leprae reference strains and from 246 skin biopsies and 74 slit skin smears of leprosy patients, with genome copies quantified by RLEP qPCR. Sequencing results were evaluated versus whole genome sequencing (WGS) data of 14 strains, and versus VNTR-fragment length analysis (FLA) results of 89 clinical specimens. FINDINGS: The LOD for sequencing success ranged between 80 and 3000 genome copies, depending on the sample type. The LOD for minority variants was 10%. All SNPs detected in targets by WGS were identified except in a clinical sample where WGS revealed two dapsone resistance-conferring mutations instead of one by Deeplex Myc-Lep, due to partial duplication of the sulfamide-binding domain in folP1. SNPs detected uniquely by Deeplex Myc-Lep were missed by WGS due to insufficient coverage. Concordance with VNTR-FLA results was 99.4% (926/932 alleles). INTERPRETATION: Deeplex Myc-Lep may help improve the diagnosis and surveillance of leprosy. Gene domain duplication is an original putative drug resistance-related genetic adaptation in M. leprae. FUNDING: EDCTP2 programme supported by the European Union (grant number RIA2017NIM-1847 -PEOPLE). EDCTP, R2Stop: Effect:Hope, The Mission To End Leprosy, the Flemish Fonds Wetenschappelijk Onderzoek.


Asunto(s)
Lepra , Mycobacterium tuberculosis , Humanos , Mycobacterium leprae/genética , Pruebas de Sensibilidad Microbiana , Genotipo , Farmacorresistencia Bacteriana/genética , Lepra/diagnóstico , Lepra/tratamiento farmacológico , Lepra/epidemiología , Dapsona , Biopsia , Resistencia a Múltiples Medicamentos
17.
Emerg Infect Dis ; 29(7): 1376-1385, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347507

RESUMEN

In 2008, bacilli from 2 Hansen disease (leprosy) cases were identified as a new species, Mycobacterium lepromatosis. We conducted a systematic review of studies investigating M. lepromatosis as a cause of HD. Twenty-one case reports described 27 patients with PCR-confirmed M. lepromatosis infection (6 dual M. leprae/M. lepromatosis): 10 case-patients in the United States (7 originally from Mexico), 6 in Mexico, 3 in the Dominican Republic, 2 each in Singapore and Myanmar, and 1 each in Indonesia, Paraguay, Cuba, and Canada. Twelve specimen surveys reported 1,098 PCR-positive findings from 1,428 specimens, including M. lepromatosis in 44.9% (133/296) from Mexico, 3.8% (5/133) in Colombia, 12.5% (10/80) in Brazil, and 0.9% (2/224) from the Asia-Pacific region. Biases toward investigating M. lepromatosis as an agent in cases of diffuse lepromatous leprosy or from Mesoamerica precluded conclusions about clinicopathologic manifestations and geographic distribution. Current multidrug treatments seem effective for this infection.


Asunto(s)
Lepra Lepromatosa , Lepra , Mycobacterium , Humanos , Lepra/diagnóstico , Lepra/tratamiento farmacológico , Lepra/epidemiología , Lepra Lepromatosa/diagnóstico , Lepra Lepromatosa/tratamiento farmacológico , Lepra Lepromatosa/epidemiología , Mycobacterium leprae/genética
18.
Am J Trop Med Hyg ; 109(2): 345-349, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37339763

RESUMEN

In leprosy, early diagnosis is crucial to prevent transmission and onset of disabilities of the disease. The purpose of this study was to determine usefulness of quantitative real-time polymerase chain reaction (PCR) in clinically diagnosed cases of leprosy. Thirty-two leprosy cases were included. The real-time PCR was performed using commercial kit targeting Mycobacterium leprae-specific insertion sequence element. The slit skin smear was positive in two (22.2%) borderline tuberculoid (BT) patients, five (83.3%) borderline lepromatous (BL) patients, and seven (50%) lepromatous leprosy (LL). The positivity of quantitative real-time PCR in BT, BL, LL, and pure neuritic leprosy were 77.8%, 83.3%, 100%, and 33.3%, respectively. Using histopathology as the gold standard, sensitivity of quantitative real-time PCR was 93.1%, and specificity was 100%. The DNA load was higher in LL (3,854.29/106 cells), followed by BL (140.37/106 cells), and BT (2.69/106 cells). Because of the high sensitivity and specificity of real-time PCR, our study strongly suggests the use of real-time PCR as a diagnostic tool for leprosy.


Asunto(s)
Lepra Dimorfa , Lepra Lepromatosa , Lepra Paucibacilar , Lepra , Humanos , Mycobacterium leprae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Lepra/patología , Lepra Lepromatosa/diagnóstico , Lepra Paucibacilar/diagnóstico
19.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240073

RESUMEN

Peripheral nerves and Schwann cells (SCs) are privileged and protected sites for initial colonization, survival, and spread of leprosy bacillus. Mycobacterium leprae strains that survive multidrug therapy show a metabolic inactivation that subsequently induces the recurrence of typical clinical manifestations of leprosy. Furthermore, the role of the cell wall phenolic glycolipid I (PGL-I) in the M. leprae internalization in SCs and the pathogenicity of M. leprae have been extensively known. This study assessed the infectivity in SCs of recurrent and non-recurrent M. leprae and their possible correlation with the genes involved in the PGL-I biosynthesis. The initial infectivity of non-recurrent strains in SCs was greater (27%) than a recurrent strain (6.5%). In addition, as the trials progressed, the infectivity of the recurrent and non-recurrent strains increased 2.5- and 2.0-fold, respectively; however, the maximum infectivity was displayed by non-recurrent strains at 12 days post-infection. On the other hand, qRT-PCR experiments showed that the transcription of key genes involved in PGL-I biosynthesis in non-recurrent strains was higher and faster (Day 3) than observed in the recurrent strain (Day 7). Thus, the results indicate that the capacity of PGL-I production is diminished in the recurrent strain, possibly affecting the infective capacity of these strains previously subjected to multidrug therapy. The present work opens the need to address more extensive and in-depth studies of the analysis of markers in the clinical isolates that indicate a possible future recurrence.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Quimioterapia Combinada , Leprostáticos/metabolismo , Lepra/genética , Glucolípidos/metabolismo , Anticuerpos/metabolismo , Células de Schwann/metabolismo , Antígenos Bacterianos/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-36995787

RESUMEN

BACKGROUND: Brazil has the second largest number of leprosy cases worldwide, and the state of São Paulo has been considered non-endemic since 2006. METHODS: We analyzed 16 variable number tandem repeats loci and three single nucleotide polymorphisms loci of Mycobacterium leprae (M. leprae) in 125 clinical isolates from patients in different municipalities in the state. RESULTS: The clustering pattern of M. leprae indicated that the transmission of leprosy persisted in the state and included scenarios of intra-extra-familial transmission in areas with low endemicity. CONCLUSIONS: A significantly active circulation of M. leprae was observed. Therefore, surveillance and control measures must be implemented.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Brasil/epidemiología , Incidencia , Genotipo , Lepra/epidemiología , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...